@ Prolobjectlink Projects

prolobjectlink-jpi-jpl-yap
v. 1.2-SNAPSHOT
User Guide

Prolobjectlink Project 2024-01-09

Table of Contents |

Table of Contents
Table of CoNtents i
WAt IS 1
Getting Started ... 3
Prolog Programmingooiimiiii e 5
Bidirectional Interfaceo o 8
Development TOOIS 20
CoNtribUtION . 22
Related WOrTKS ... e 25
FAQ 27

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

Table of Contents

©2024,

Prolobjectlink Project

ALL RIGHTS RESERVED.

1 What Is 1

What Is

1.1 What is

1.1.1 Introduction

Java Prolog Interface (JPI) is an Application Provider Interface (API) for interaction between Java
and Prolog programming languages. Is a bidirectional interface that communicate Java applications
with Prolog program or database and Prolog procedures with Java class and methods.

JPI is an abstraction layer over concrete prolog drivers over Prolog Engines. This API define all
mechanism to interact with any Prolog Engine and maintain the application independent to a specific
underlying engine. JPI have severa connectors to open source prolog engines like SWI, YAP, XSB
native engines and tuProlog, jTrolog, jLog Java based prolog engines.

JPI study all related Java-Prolog integration libraries and take the betters features from each solution
with the propose to achieve a common integration interface. The last feature alows switch the under
laying Prolog Engine driver and the application code still be the same.

JPI run over any Java Virtual Machine that support Java SE 5 or above. The project was tested over
HotSpot, Open J9 and JRockit Virtual Machines over Operating Systems like Windows (7,8,10),
Linux (Debian, Ubuntu) and Mac OS X. Can be deployed on Servlets Containers like Jetty, Tomcat
or Glassfish Application Server. JPI can be include in any Java Project using the commonest Java
Integration Development Enviroment (IDE) like Eclipse, Netbeans, IntellijIDEA and so on.

JPI is developed and maintained by Prolobjectlink Project an open source initiative for build logic
based applications using Prolog like fundamental Logic Programming Language in the persistence
layer and application programming.

The selected license for JPI is Simplified BSD License a permissive license alowing to concrete
implementations can use some possibilities like GPL, Apache 2.0 and others in the interface
implementation. We suggest adopt the same license from prolog javadriver if it is possible. In this
way the java prolog driver and your JPI implementation share the same license and can be combined
with JPI interface that is lessrestrictive licensed. Finally, license is the most restrictive licensed, being
in many occasions the java prolog driver licenses the most restrictive.

1.1.2 Copyright and License Information
JPI isrelease under Simplified BSD License:
Copyright © 2019 Prolobjectlink Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE ISPROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"ASIS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

1 What Is 2

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;, LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.1.3 Release Notes

Version 1.0.0: Initial release.

1.1.4 Acknowledgments
Thanksto Prolabjectlink Development Team, Contributors and Sponsors.

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

2 Getting Started 3

Getting Started

2.1 Getting Started

2.1.1 Install

Java Prolog Interface API is distributed with implementation adapter and concrete prolog driver
library until it is possible according to related libraries licenses. The distributions are named

normally such that prolobjectlink-jpi-j pl 7-swi7-x.y.z-dist.zip meaning that this distribution is a JPI
implementation over JPL version 7 or above and SWI-Prolog version 7 or above. The x.y.z isthe
distribution version. The distribution can be downloaded in zip or tar.gz compresses format. To install
you need perform the following steps:

Install Java Runtime Environment (JRE) 1.8 or above.

Install Native Prolog Engine compatible to Operating System and your architecture. If the Prolog
Engineto use is Java-based this step is omitted.

Configure System Path with Prolog Engine routes. If the Prolog Engine to use is Java-based this
step is omitted.

Download Java Prolog Interface compatible to related prolog engine and unzip the distribution
over Operating File System.

Configure System Path with JPI unzip folder route.

Open a new System console and type pllink — to see the product information.

For the JPI beginners we recommended start with a Pure Java-Prolog Engine because have less
configuration aspects and native engine are more difficult to link.

2.1.2 Directories

After download and unzip JPI distribution in the final JPI folder you will see the following structure:

Folder/File Description
bin Binaries scripts
docs Documentation
prt Prolog programs files
lib Library jars files
obj Programs to link native engine procedures
src Adapter source folder
CONTRIBUTING Binaries scripts
LICENSE Binaries scripts
NOTICE Binaries scripts
README Binaries scripts

2.1.3 Architecture

In general way and in bottom-up order the JPI architecture is composed by the guest Operating
System at low level. Over this level we find compatible with guest Operating System and Native
Prolog Engines implementations. Over thislevel we find Pure Java Prolog Engine implementations

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

2 Getting Started 4

and Java Driver libraries to Native Prolog Engine. Over this layer isthe JPI interface adapter
implementation for your correspondent Java Prolog Driver. In the top level we find a User
Application that use the JPI interface.

User Application
JPI
JPI-JPL
JPL
SWi
(O]

2.1.4 Getting started Java to Prolog

After installation and architecture compression you can use the hello world sample for test the system
integration. This hello world sample show how interacts with JPI from Java programming language
with Abstracted Prolog Engine. For the first experience we suggesting use a Java-based Prolog engine
like tuProlog because have less configuration aspects.

Create in your preferred development environment an empty project. Set in the project build path the
JPI downloaded libraries located at lib folder. Create a Main Java class that ook like below code:

public class Miin {

public static void main(String[] args) {
Prol ogProvi der provider = Prol og.
get Provi der (XsbPr ol og. cl ass);
Prol ogEngi ne engi ne = provi der. newEngi ne();
engi ne. asserta("sanmple('hello wolrd')");
Prol ogQuery query=engi ne. query("sanple(X)")
System out. println(query.one());

2.1.5 Getting started Prolog to Java
Blah, Blah, ...

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

3 Prolog Programming 5

Prolog Programming

3.1 Prolog Programming

3.1.1 Introduction

Prolog is a programming language that originated in the early 1970s and was initialy developed

for natural language processing. It became popular with the introduction of interpreters for various
computer systems. Prolog evolved from being interpreted to a semi-interpreted language, thanks to the
creation of acompiler. Its adoption for the fifth-generation computer project and the establishment of
an | SO standard (I1SO/IEC 13211-1) further contributed to its widespread use.

Prolog belongs to the paradigm of logic and declarative languages, which setsit apart significantly
from more popular languages such as FORTRAN, Pascal, C, or Java. In the aforementioned
programming languages, instructions are typically executed sequentially, one after another, in the
same order asthey are written. The order only changes when a control instruction is reached (such as
aloop, conditional statement, or transfer).

Prolog programs consist of Horn clauses that represent "modus ponens' rules, meaning "If the
antecedent is true, then the consequent is true." However, the way Horn clauses are written isthe
opposite of the usual convention. First, the consequent is written, followed by the antecedent.
The antecedent can be a conjunction of conditions referred to as a sequence of goals. Each goal is
separated by a comma and can be seen as similar to an instruction or procedure call in imperative
languages. In Prolog, there are no control instructions. Execution is based on two concepts:
unification and backtracking.

Thanks to unification, each goal determines a subset of clauses that can be executed. Each of these
subsets is called a choice point. Prolog selects the first choice point and continues executing the
program until determining whether the goal istrue or false. If the goal is false, backtracking comes
into play. Backtracking involves undoing everything that has been executed, placing the program in
the same state it was in just before reaching the choice point. Then, the next pending choice point is
taken, and the process is repeated. All goals conclude their execution either successfully ("true") or
unsuccessfully ("false").

3.1.2 Data types

Prolog has a single data type called "term.” Terms can be atoms, numbers, variables, or compound
terms. Atoms are general-purpose names with no built-in meaning. Examples of atoms are x, red,
"Taco', and 'some atom'. Numbers can be floats or integers. Prolog systems compatible with the 1ISO
standard can check the "bounded” flag. Most major Prolog systems support integers of arbitrary
length. Variables are represented by strings consisting of |etters, numbers, and underscores. They
start with an uppercase letter or underscore. Variables closely resemble logic variables as they act as
placeholders for any term.

A compound term consists of an atom called a "functor" and a number of "arguments,” which
are themselves terms. Compound terms are typically written as a functor followed by alist of
comma-separated argument terms enclosed in parentheses. The number of argumentsis referred
to astheterm's "arity.” An atom can be seen as a compound term with arity zero. For example,
person_friends(zelda, [tom, jim]) isacompound term.

Specia cases of compound terms: - Lists: An ordered collection of terms denoted by square brackets.
The terms are separated by commas. An empty list is represented by []. For instance, [1, 2, 3] or [red,
green, blug].

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

3 Prolog Programming 6

- Strings: A sequence of characters surrounded by gquotes. Depending on the value of the Prolog flag
"double_guotes," a string can be treated as alist of character codes, alist of single-character atoms, or
simply as an atom. For example, "to be, or not to be".

ISO Prolog provides predicates like atom/1, number/1, integer/1, and float/1 for type-checking.

3.1.3 Rules and Facts

Prolog programs define relationships using clauses. Pure Prolog is limited to Horn clauses. There are
two types of clauses: facts and rules. A rule has the form:

Head :- Body.

Thissignifiesthat "Head istrueif Body istrue." The body of arule consists of callsto predicates,
which are the goals of the rule. The built-in logical operator ,/2 (denoting a binary operator named *,")
represents the conjunction of goals, while ;/2 represents disjunction. Conjunctions and disjunctions
can only appear in the body of arule, not in the head.

Clauses with empty bodies are referred to as facts. An example of afact is:

cat(tom).

Thisis equivaent to therule:

cat(tom) :- true.

The built-in predicate true/0 is always true. Based on the given fact, we can ask: Istom a cat?
?- cat(tom).

The answer is"Yes." We can aso inquire about the things that are cats: What things are cats?
?- cat(X).

The answer is X = tom. Clauses with bodies are known asrules. An example of aruleis:
animal (X) :- cat(X).

If we include thisrule and ask what things are animals;

?- animal (X).

The answer is X = tom.

Dueto the relational nature of many built-in predicates, they can be used in multiple ways. For
instance, length/2 can be used to find the length of alist (length(List, L)) given alist List, generate
alist skeleton of a specific length (Iength(X, 5)), or generate baoth list skeletons and their lengths
together (length(X, L)). Similarly, append/3 can be employed to append two lists (append(ListA,
ListB, X)) given lists ListA and ListB, or split agiven list into parts (append(X, Y, List)) given alist
List. Consequently, arelatively small set of library predicatesis sufficient for many Prolog programs.

As a genera-purpose language, Prolog a so offers various built-in predicates for common tasks
such as input/output, graphics usage, and interaction with the operating system. These predicates do
not have relational meanings and are only useful for their system-related effects. For example, the
predicate write/1 displays aterm on the screen.

3.1.4 Execution

To run aProlog program, you start by entering asingle goal called the query. The Prolog engine

then attempts to find a resolution refutation of the negated query. Prolog uses a method called

SLD resolution. If the negated query can be proven false, it means that the original query, with the
appropriate variable assignments, is alogical consequence of the program. In this case, al the variable
assignments are displayed, and the query is considered successful.

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

3 Prolog Programming 7

Operatively, Prolog's execution strategy can be seen as an extension of function callsin other
programming languages. One difference is that multiple clause heads can match a particular call.
When this happens, the system creates a choice point, where it matches the goal with the clause head
of the first alternative and proceeds with that alternative's goals. If any goal fails during program
execution, all variable assignments made since the most recent choice point was created are undone,
and execution continues with the next alternative of that choice point. This strategy is known as
chronologica backtracking.

For example:

not her _chil d(trude, sally).
father_child(tom sally).
father_child(tom erica).
father_child(m ke, ton.
sibling(X, Y) :- parent_child(z, X), parent_child(z, Y).
parent _child(X, Y) :- father_child(X Y)
parent _child(X, Y) :- nother_child(X Y)

Executing the following query will yield atrue result:

?- sibling(sally, erica).
Yes

Here's how the result is obtained: Initialy, the only clause head that matches the query “sibling(saly,
erica)” isthefirst one. Therefore, proving the query is equivaent to proving the body of

that clause with the appropriate variabl e assignments, which in this case is the conjunction
“(parent_child(Z,sally), parent_child(Z,erica))". The next goal to proveisthe leftmost part of this
conjunction: “parent_child(Z, sally)". There are two clause heads that match this goal. The system
creates a choice point and attempts the first alternative, which has the body “father_child(Z, sally)".
Thisgoal can be proven with the fact “father_child(tom, sally)", leading to the assignment "Z = tom'.
The next goal to proveisthe second part of the conjunction: “parent_child(tom, erica)". Thisisalso
proven by the corresponding fact. Since all the goals have been proven, the query is considered
successful. Asthe query doesn't contain any variables, no assignments are displayed to the user.

A query that includes variables, such as “?- father_child(Father, Child).", will list all valid answers
through backtracking. Note that with the given code, the query “?- sibling(sally, sally).” aso succeeds.
If there are specific restrictions, additional goals should be added to the code.

SO Prolog is atechnical standard developed by the International Organization for Standardization
(1S0). It consists of two main parts. Thefirst part, 1SO/IEC 13211-1, was published in 1995 with
the goal of standardizing the core elements of Prolog. This standard aims to bring clarity and remove
ambiguitiesin the language, making it easier to write portable programs. Additionally, there have
been three corrigendaissued: Cor.1:2007, Cor.2:2012, and Cor.3:2017.

The second part, ISO/IEC 13211-2, was published in 2000 and provides support for modules within
the standard. The maintenance of this standard is overseen by the | SO/IEC JTCL/SC22/WG17
working group. In the United States, the US Technical Advisory Group for the standard is ANSI
X3J17.

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

4 Bidirectional Interface 8

Bidirectional Interface

4.1 Bidirectional Interface

4.1.1 Install

Java Prolog Interface API is distributed with implementation adapter and concrete prolog driver
library until it is possible according to related libraries licenses. The distributions are named
normally such that prolobjectlink-jpi-jpl 7-swi7-x.y.z-dist.zip meaning that this distribution is a JPI
implementation over JPL version 7 or above and SWI-Prolog version 7 or above. The x.y.z isthe
distribution version. The distribution can be downloaded in zip or tar.gz compresses format. To install
you need perform the following steps: «Install Java Runtime Environment (JRE) 1.8 or above. ¢Install
Native Prolog Engine compatible to Operating System and your architecture. If the Prolog Engine

to use is Java-based this step is omitted. «Configure System Path with Prolog Engine routes. If the
Prolog Engine to use is Java-based this step is omitted. «Download Java Prolog I nterface compatible
to related prolog engine and unzip the distribution over Operating File System. «Configure System
Path with JPI unzip folder route. «Open a new System console and type pllink — to see the product
information. For the JPI beginners we recommended start with a Pure Java-Prolog Engine because
have less configuration aspects and native engine are more difficult to link.

4.1.2 Getting started Java to Prolog

After installation and architecture compression you can use the hello world sample for test the system
integration. This hello world sample show how interacts with JPI from Java programming language
with Abstracted Prolog Engine. For the first experience we suggesting use a Java-based Prolog engine
like tuProlog because have less configuration aspects.

Create in your preferred development environment an empty project. Set in the project build path the
JPI downloaded libraries located at lib folder. Create a Main Java class that look like below code:

public class Miin {
public static void main(String[] args) {
Pr ol ogProvi der provider = Prol og. getProvider();
Pr ol ogEngi ne engi ne = provi der. newkngi ne();
engi ne. asserta("sanple('hello wolrd')");
Prol ogQuery query=engi ne. query("sanple(X)");
System out. println(query.one());

}

4.1.3 Architecture

JPI use alayered architecture pattern where every layer represents a component. The multi-engine
Java Prolog connectors provide different levels of abstraction to simplify the implementations of
common inter-operability task JPC. Java Prolog Connectors architectures describe three fundamentals
layers, High-level API layer, Engine Adapter layer and Concrete Engine layer. High-level API layer
define al servicesto be used by the usersin the Java Prolog Application that is the final architecture
layer on the architecture stack. High-level API provide the common implementation of Engine
Abstraction, Data Type and Inter-Language conversion. The adapter layer adapts before mentioned
features to communicate with the concrete Engine Layer, being the last responsible of execute the
reguest services.

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

4 Bidirectional Interface 9

All existing Java Prolog Connectors implementation only bring support for Native Prolog

Engines that have VM bindings driver. JPI project is more inclusive and find connect all Prolog
Engines Categories, Native and Java Based implementations. Some particular Java Based
implementations in the future can be implement in strike forward mode the JPI interface. This
particulars implementati ons reduce the impedance mismatch by remove the adapter layer. Therefore,
JPI reference implementations will be faster than other that use adapter layer.

In JPI architecture stack in the bottom layer we have the Operating System. The Operating System
can be Windows, Linux or Mac OS. Over Operating System, we have the native implementation of
JVM and Prolog Engines like SWI, SWI7 and others. Over VM and Prolog Engines we have Java
Based Prolog Engines implementations and JVM bindings driver that share the runtime environment
with VM and native Prolog Engines. Over Java Based Prolog Engines implementations and

JVM bindings drivers we have the JPI correspondent adapters. The adapters artifacts are the JPI
implementations for each Prolog Engines. Over each adapter we have the JPI application provider
interface and at the top stack we the final user application. The user application only interacts with the
JPI providing single sourcing and transparency.

4.1.4 Prolog Provider

Prolog Provider isthe mechanism to interact with all Prolog components. Provider classes
implementations allow create Prolog Terms, Prolog Engine, Java Prolog Converter, Prolog Parsers
and system logger. Using io.github.prolobjectlink.prol og.Prolog bootstrap class the Prolog Providers
are created specifying the provider classin getProvider(Class ?) method. Thisis the workflow start
for JPI. When the Prolog Provider is created the next workflow step is the Prolog Terms creation
using Java primitive types or using string with Prolog syntax. Provider allow create/parsing al Prolog
Terms (Atoms, Numbers, Variables and Compounds). After term creation/parsing the next step

is create an engine instance with newEngine() method. Using previous term creation and engine
instance Prolog Queries can be formulated. Thisis possible because the engine class have multiples
gueries creation methods like a query factory. After query creation the Query interface present many
methods to retrieve the query results. The result methods are based on result quantities, result terms,
result object types, etc... Thisisthefinal step in the workflow. In the table 10 is resumed all Prolog
Provider Interface methods.

4.1.5 Prolog Terms

All Java Prolog connector libraries provide data type abstraction. Prolog data type abstraction have
like ancestor the Term class. Prolog term is coding like abstract class and other Prolog terms are
derived classes. In PrologTerm is defined the common term operation for all term hierarchy (functor,
arity, compare, unify, arguments). The derived classes implement the correct behavior for each before
mentioned operations. All Prolog data types PrologAtom, PrologNumber, PrologList, PrologStructure
and PrologVariable are derived from this class. All before mentioned classes extends from this class
the commons responsibilities. PrologTerm extends from Comparable interface to compare the current
term with another term based on Standard Order.

PrologAtom represent the Prolog atom data type. Prolog atoms are can be of two kinds simple or
complex. Simple atoms are defined like a single alpha numeric word that begin like initial lower

case character. The complex atom is defining like any character sequence that begin and end with
simple quotes. The string passed to build a simple atom should be match with {az} { A-Z&-z0-9_}*
regular expression. If the string passed to build an atom don't match with the before mentioned regular
expression the atom constructor can be capable of create a complex atom automatically. For complex
atom the string value can have the quotes or just can be absent. The printed string representation of
the complex atom implementation set the quotesif they are needed.

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

4 Bidirectional Interface 10

Prol ogTer m pam = provi der. newAt on(" pani) ;
Prol ogTer m bob = provi der. newAt on{"bob");

PrologDoubl e represent a double precision floating point number. Extends from PrologNumber
who contains an immutable Double instance. The Prolog Provider is the mechanism to create
anew Prolog double invoking PrologProvider.newDouble(Number). PrologFloat represent a
single precision floating point number. Extends from PrologNumber who contains an immutable
Float instance. The Prolog Provider is the mechanism to create a new Prolog float invoking
PrologProvider.newFloat(Number). Prologlnteger represent an integer number. Extends from
PrologNumber who contains an immutable Integer instance. The Prolog Provider is the mechanism
to create anew Prolog integer invoking PrologProvider.newlnteger(Number). Prolog term that
represent along integer number. Extends from PrologNumber who contains an immutable Long
instance. The Prolog Provider is the mechanism to create a new Prolog long integer invoking
PrologProvider.newL ong(Number).

Prol ogTerm pi = provi der. newDoubl e(Mat h. PI');
Prol ogTerm eul er = provider. newrl oat (Mat h. E) ;
Prol ogTermi = provider.new nteger(10);

Prol ogTerm | = provider.newiLong(10);

PrologVariable is created using PrologProvider.newV ariable(int) for anonymous variables and
PrologProvider.newV ariable(String, int) for named variables. The Prolog variables can be used and
reused because they remain in java heap. Y ou can instantiate a prolog variable and used it any times
in the same clause because refer to same variable every time. The integer parameter represents the
declaration variable order in the Prolog clause starting with zero.

Prol ogTerm x = provi der.newariable("X", 0);
Prol ogTermy = provider.newariable("Y", 1);
Prol ogTerm z = provi der.newariable("Z", 2);

engi ne. assert z(
provi der. newSt ruct ure(grandparent, x, z),
provi der. newSt ructure(parent, x, Yy),
provi der. newSt ructure(parent, y, z)

)

PrologReference term isinspired on JPL JRef. This term is like a structure compound term that have
like argument the object identification atom. The functor isthe @ character and the arity is 1. An
example of this prolog term is e.g. @(J#00000000000000425). To access to the referenced object, is
necessary use PrologTerm.getObject().

PrologList are a special compound term that have like functor adot (.) and arity equals 2. Prolog

list are recursively defined. Thefirst iteminthe list isreferred like list head and the second item

list tail. The list tail can be another list that contains head and tail. A special list case is the empty
list denoted by no items brackets ([]). The arity for thisempty list is zero. The Prolog Provider is
the mechanism to create a new PrologList isinvoking PrologProvider.newList() for empty list or
PrologProvider.newList(PrologTerm) for oneitem list or PrologProvider.newList(PrologTerm([]) for
many items.

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

4 Bidirectional Interface 11

provi der. newLi st ();
rovi der. newi nt eger (1);
Prol ogTerm t wo rovi der. newl nt eger (2);
Prol ogTerm t hree provi der. new nt eger (3);
Prol ogTerm i st = provider.newLi st (
new Prol ogTerni] { one, two, three}

Prol ogTerm enpty
Prol ogTerm one =

p
p

);
for (PrologTerm prologTerm: list) {
System out. println(prol ogTerm;

}

PrologList implement Iterable interface to be used in for each sentence iterating over every element
present in the list.

Iterator<PrologTerm> i = list.iterator();

while (i.hasNext()) {
Prol ogTerm prol ogTerm = i.next();
System out. println(prol ogTerm;

}

for (Iterator<PrologTerms i = list.iterator(); i.hasNext();) {
Prol ogTerm prol ogTerm = i. next ();
System out. println(prol ogTernj;

}

Prolog structures consist in arelation the functor (structure name) and arguments enclosed between
parenthesis. The Prolog Provider is the mechanism to create a new Prolog structures invoking
PrologProvider.newStructure(String, PrologTerm...). Two structures are equalsif and only if are
structure and have equals functor and arguments. Structures terms unify only with same functor and
arguments structures, with free variable or with with structures where your arguments unify if they
have the same functor and arity. Structures have a special property hamed arity that means the number
of arguments present in the structure. There are two special structures term. They are expressions
(Two arguments structure term with operator functor) and atoms (functor with zero arguments). For
the first special case must be used PrologProvider.newStructure(PrologTerm, String, PrologTerm)
specifying operands like arguments and operator like functor.

Prol ogTer m pam = provi der. newAt on(" pani) ;
Prol ogTer m bob = provi der. newAt on("bob");
Prol ogTerm parent = provider.newStructure("parent", pam bob);

4.1.6 Prolog Engine

Prolog Engine provide a general propose application interface to interact with Prolog Programing
Language. Is a convenient abstraction for interacting with Prolog Virtual Machine from Java. In

Java Prolog Engine connectors libraries, the abstract engine is able to answer queries using the
abstract term representation before mentioned. There are several implementation engines and in this
project we try connect from top level engine to more concrete or specific Prolog Engine. Based on
JPC we have atop level engine that communicate with more concretes engines. Over this concretes
engines we offer several services to interact with the concrete engines with low coupling and platform
independency.

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

4 Bidirectional Interface

4.1.7 Prolog Query

Prolog query is the mechanism to query the prolog database loaded in prolog engine. The way to
create anew prolog query isinvoking query() method in the Prolog Engine. When this method is

called the prolog query is open an only dispose() in PrologQuery object close the current query and

12

release all internal resources. Prolog query have several methods to manipulate the result objects. The

main differenceisin return types and result quantities. The result types enough depending of desire
datatype. Maps of variables name key and Prolog terms as value, Maps of variables name key and

Javaobjects asvalue, List of before mentioned maps, Prolog terms array, Prolog terms matrix, list of

Java Objectsand list of list of Java Objects. Respect to result quantities Prolog query offer one, n-th
or al possible solutions. Thisis an important feature because the Prolog engine is forced to retrieve

the necessary solution quantities. Prolog query implement Iterable and Iterator. Thisimplementation

helps to obtain successive solutions present in the query.

public class Miin {
public static void main(String[] args) {

Prol ogQuery query =
whil e (query. hasNext ()) {
Prol ogTerm val ue =
System out . println(val ue);
}
qguery. di spose();
engi ne. di spose();
}
}

Prol ogProvi der provider = Prol og. getProvider();
Prol ogEngi ne engi ne = provi der. neweEngi ne("zoo. pl");
Prol ogVari abl e x = provider. newari abl e("X", 0);

engi ne. quer

public class Miin {
public static void main(String[] args) {

Pr ol ogEngi ne engi ne = provider.

Prol ogQuery query =
for (Collection<PrologTernm> co

System out . pri nt

}
}
query. di spose();
engi ne. di spose();

Prol ogProvi der provider = Prol og.getProvi de

for (PrologTerm prol ogTerm: col) {

neweEngi ne("

Prol ogVari abl e x = provider. newari abl e(" X"

query) {

I n(prol ogTe

4.1.8 Prolog Query Builder

y(provi der. newst

que

2r () ;

zoo. pl");

=

0);
engi ne. quer

Prolog query builder to create prolog queries. The mechanism to create a new query builder isusing

PrologEngine.newQueryBuilder(). The query builder emulates the query creation

process. After

define all participant terms with the begin(PrologTerm) method, we specify the first term in the query.
If the query has more terms, they are created using comma(PrologTerm) for everyone. Clause builder
have a getQueryString() for string representation of the clause in progress. After clause definition this

builder have query() method that create the final query instance ready to be used. The follow code

show how create a Prolog query ?- big(X), dark(X). using PrologQueryBuilder interface.

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

4 Bidirectional Interface 13

Prol ogVari abl e x = provider. newariable("X", 0);

Prol ogStructure big = provider.newStructure("big", x);

Prol ogStructure dark = provider.newStructure("dark", Xx);
Prol ogQuer yBui | der buil der = engi ne. newQuer yBui | der () ;

Prol ogQuery query = buil der. begi n(dark).conma(big).query();

4.1.9 Prolog Clause

Prolog clause is composed by two prolog terms that define a prolog clause, the head and the body.
This representation considers the prolog clause body like asingle term. If the body is a conjunctive
set of terms, the body is a structure with functor/arity (, /2) and the first argument is the first element
in the conjunction and the rest is arecursive functor/arity (, /2). The functor and arity for the clause

is given from head term functor and arity. This class define some properties for commons prolog
clause implementations. They are boolean flags that indicate if the prolog clause is dynamic multi-
file and discontiguos. This class have several methods to access to the clause components and retrieve
some clause properties and information about it. Additionally, this class contains a prolog provider
reference for build terms in some operations.

4.1.10 Prolog Clause Builder

Prolog clause builder to create prolog clauses. The mechanism to create a new clause builder is
using PrologEngine.newClauseBuilder(). The clause builder emul ates the clause creation process.
After define all participant terms with the begin(PrologTerm) method, we specify the head of the
clause. If the clause isarule, after head definition, the clause body is created with neck(PrologTerm)
for the first term in the clause body. If the clause body have more terms, they are created using
comma(PrologTerm) for everyone. Clause builder have a getClauseString() for string representation
of the clause in progress. After clause definition this builder have asserta(), assertz(),clause(),retract()
that use the wrapped engine invoking the correspondent methods for check, insert or remove clause
respectively.

Prol ogTerm z = provider. newariable("z", 0);

Prol ogTerm dar kZ = provider. newStructure("dark", z);

Prol ogTerm bl ackZ = provi der. newSt ruct ure("bl ack", 2z);
Prol ogTerm brownZ = provi der. newSt ruct ure("brown", 2z);
Prol ogC auseBui | der buil der = engi ne. newCl auseBui | der () ;
bui | der. begi n(dar kZ) . neck(bl ackz) . assertz();

bui | der. begi n(dar kZ) . neck(brownZz) . assertz();

The Prolog result in database is showed in the follow code. The table 19 show the Prolog clause
builder interface methods.

dark(2): -
bl ack(Z2) .
dark(2): -
brown(2).

4.1.11 Prolog Scripting in Java

Java 6 added scripting support to the Java platform that |ets a Java application execute scripts written
in scripting languages such as Rhino JavaScript, Groovy, Jython, JRuby, Nashorn JavaScript,

etc. All classes and interfaces in the Java Scripting APl are in the javax.script package. Using a
scripting language in a Java application provides severa advantages, dynamic type, simple way

to write programs, user customization, easy way to develop and provide domain-specific features

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

4 Bidirectional Interface 14

that are not available in Java. For achieve this propose Java Scripting APl introduce a scripting

engine component. A script engine is a software component that executes programs writtenin a
particular scripting language. Typically, but not necessarily, a script engine is an implementation of

an interpreter for a scripting language. To run a script in Javais necessary perform the following three
steps, create a script engine manager, get an instance of a script engine from the script engine manager
and Call the eval() method of the script engine to execute a script.

public class Main {
public static void main(String[] args) {
Scri pt Engi neManager manager = new Scri pt Engi neManager () ;
Scri pt Engi ne engi ne = nanager . get Engi neByNane(" prol 0g");
Bool ean result = engine.eval ("?- X is 5+3.");
I nt eger solution = engine.get("X");
System out. println(sol ution);

}

Using script engine, it possible read Prolog source file. Read Prolog source file allow coding all
prolog source in separate mode respect to Java program.

public class Miin {

public static void main(String[] args) {
Scri pt Engi neManager manager = new Scri pt Engi neManager () ;
Scri pt Engi ne engi ne = nanager . get Engi neByNane(" prol 0g");
Bool ean read = engi ne. eval (new Fi | eReader ('|famly.pl"));
Bool ean eval = engine.eval ("?- parent(Parent, Child)");
hj ect parent = engi ne.get("Parent");
oj ect child = engine.get("Child");
System out. printl n(parent);
Systemout. println(child);

4.1.12 Getting started Prolog to Java

Thisis an overview of an interface which allows SWI-Prolog programs to dynamically create and
mani pul ate Java objects.

4.1.12.1 JPL types (Java types, as seen by Prolog)

All Java values and object references which are passed between Prolog engines and Java VMsvia
JPL's Prolog API are seen as instances of types within this simplified JPL type system:

adatum (this term isintroduced, out of necessity, to refer jointly to values and refs)
isavaue (vaues are copied between Prolog and the VM)

isaboolean

or achar

or along, int, short or byte

or adouble or float

or astring (an instance of java.lang.String)

or avoid (an artificial value returned by calls to Java void methods)

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

4 Bidirectional Interface 15

or aref

isnull

or an object (held within the VM, and represented in Prolog by a canonical reference)
isan array

or aclassinstance (other than of java.lang.String)

4.1.12.2 Representation of Java values and references within Prolog
Instances of JPL types are represented within Prolog as follows:

boolean has two values, represented by @(true) and @(false)
char values are represented by corresponding Prolog integers
int, short and byte values are represented by corresponding Prolog integers

long values are represented as Prolog integers if possible (32-bit in current SWI-Prolog), else as
jlong(Hi,Lo) where Hi is an integer corresponding to the top32 bits of the long, and Lo similarly
represents the lower 32 bits

double and float values are represented as Prolog floats (which are equivalent to Java doubles) (there
may be minor rounding, normalisation or loss-of-precision issues when a Java float is widened to a
Prolog float then narrowed back again, but what the heck)

string values (immutable instances of java.lang.String) are represented as Prolog atoms (in UTF-8
encoding)

null has only one value, represented as @(null)
void has only one value, represented as @(void)

array and class instance references are currently represented as @(Tag), where Tag ia an atom whose
name encodes a JNI global reference value; this may change, but won't affect Prolog programs which
respect the opacity of references

4.1.12.3 Representation of Java types within Prolog (1): structured notation

The JPL Prolog API allows Prolog applications to inspect, manipulate, and reason about the types
of Java values, references, methods etc., and this section describes how these types themselves (as
opposed to instances thereof) are represented. Predicates which pass these type representations
include jpl_class to_type/2, jpl_classname_to type/2, jpl_datum_to type/2, jpl_is object type/1l,
jpl_is type/l, jpl_object_to type/2, jpl_primitive type/l, jpl_ref _to type/2, jpl_type to class/2.
jpl_type to_classname/2.

void is represented as void

null is represented as null

the primitive types are represented as boolean, char, byte, short, int, long, float, double
classes are represented as class(package _parts,classname_parts)

e.g. class([java,util],['Date])

array types are represented as array/(type)

e.g. array(boolean)

e.g. array(class([java,lang],['String])

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

4 Bidirectional Interface 16

This structured notation for Javatypesis designed to be convenient for composition and
decomposition by matching (unification).

4.1.12.4 Predicates

4.Creating instances of Java classes

To create an instance of a Java class from within Prolog, call jpl_new(+Class,+Params,-Ref) with
aclassname, alist of actual parameters for the constructor, and a variable to be bound to the new
reference, e.g.

‘ jpl _new('javax.swing.JFrame', ['franme with dialog'], F) ‘

which binds F to a new object reference, e.g.

\ @' J#0008272420") \

(not that the details of this structure are of any necessary concern to the Prolog programmer or to the
applications she writes). NB for convenience, this predicate is overloaded: Class can also be aclass
type in structured notation, e.g. array(boolean).

4.Calling methods of Java objects or classes

The object reference generated by the jpl_new/3 call (above) can be passed to other JPL AP
predicates such as

‘ jpl _call(+Ref, +Method, +Params, -Result) ‘

eg.
\ ipl _call(F, setVisible, [@true)], _) \

which calls the setVisible method of the object to which F refers, effectively passing it the Java value
true.

(This call should display the new JFrame in the top left corner of the desktop.)

Note the anonymous variable passed as the fourth argument to jsp_call/4. A variable in this position
receives the result of the method call: either avalue or areference. Since SetVisible() isavoid
method, the call returnsthe (artificial) reference @(void).

Some may prefer to code this call thus:

jpl _call(F, setVisible, [@rue], @aoid) ‘

which documents the programmer's understanding that thisis a void method (and failsif it isn't :-).
If the +Ref argument represents a class, then the named static method of that classis called.

4.Fetching field values of Java objects or classes
The jpl_get/3 API predicate can retrieve the value of an instance field or a static field, e.g.

jpl _get('java.aw.Col or', pink, Pink)

which binds the Prolog variable Pink to areference to the predefined java.awt.Color "constant" which
isheld in the static final .pink field of the java.awt.Color class.

More generaly, jpl_get/3 has the following interface:

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

4 Bidirectional Interface 17

jpl _get(+Class_or_nject, +Field, -Datum

If the first argument represents a class, then a static field of that class with FieldName is accessed.

4 Setting field values of Java objects or classes

Object and class fields can be set (i.e. have values or references assigned to them) by the jpl_set/3 API
procedure, which has the following interface:

jpl_set(+Class_or_nject, +Field, +Datum

where Datum must be avalue or reference of atype suitable for assignment to the named field of the
class or object.

4.A slightly longer example
This code fragment

findall (
Ar,
(current _prolog_flag(N, V),
termto_atonm(V, Va),
jpl _new('[Ljava.lang.String;', [N Va], Ar)
),
Ars

),

jpl _newm('[[Ljava.lang.String;', Ars, Ac),

jpl _datums_to_array([nane,value], Ah),

jpl _new('javax.swi ng.JFrame', ['current_prolog flag'], F),
jpl _call(F, getContentPane, [], CP),

jpl _new('javax.swi ng.JTable', [Ac, Ah], T),

jpl _new('javax.sw ng.JScroll Pane', [T], SP),

jpl _call(CP, add, [SP,'Center'],),

jpl _call(F, setSize, [600,400], _),

builds an array of arrays of strings containing the names and values of the current SWI-Prolog "flags”,
and displays it in a JTable within a Scroll Pane within a JFrame:

In addition to JPL API calls, this code calls jpl_datums _to_array/2, a utility which converts any list
of valid representations of Java values (or objects) into a new Java array, whose base type is the most
specialised type of which all list members are instances, and which is defined thus:

jpl _datums_to_array(Ds, A :-
ground(Ds),
jpl _datums_t o_nost _specific_comon_ancestor_type(Ds, T),
jpl _new array(T), Ds, A.

Having found the "most specific common ancestor type" (my phrase :-), anew array of thistypeis
created, whose elements are initialised to the successive members of the list of datums.

This illustrates another mode of operation of jpl_new/3:

pl _new(+ArrayType, +lnitial Values, -ArrayRef)

Don't forget the possibility of writing and manipulating new Java classes to serve your Prolog
applications: thisinterface is not designed to make Java programming redundant :-)

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

4 Bidirectional Interface 18

jpl_new(+X, +Argz, -V) :- |

X can be:

asuitabletypei.e. any class(_,), array() or primitive type (e.g. byte but not void) an atomic
classname e.g. 'javalang.String' e.g. 'Ljavalang.String;' (a redundant but legitimate form) an atomic
descriptor e.g. [I' aclass object i.e. an object whose typeis class([javalang],['Class])

if X denotes a primitive type and Argz is castable to a value of that type, then V isthat value (a
pointless mode of operation, but somehow complete...)

if X denotes an array type and Argz is a non-negative integer, then V isanew array of that many
elements, initialised to the appropriate default value

if X denotes an array type and Argz isalist of datums, each of which is (independently) castableto
the array element type, then V isanew array of as many elements as Argz has members, initialised to
the results of casting the respective members of Argz

if X denotes a non-array object type and Argz isalist of datums, then V isthe result of an invocation
of that type's most specifically-typed constructor to whose respective parameters the members of Argz
are assignable

jpl_call(+X, +Method, +Args, -R) :-

X can be:

atype, class object or classname (for static methods of the denoted class, or for static or instance
methods of java.lang.Class)

aclassinstance or array (for static or instance methods)
Method can be:

an atomic method name (if this name is ambiguous, as a result of method overloading, then it will be
resolved by considering the types of Args, asfar asthey can be inferred)

an integral method index (untested: for static overload resolution)
amethodI D/1 structure (ditto)

Args must be

aproper list (possibly empty) of ground arguments

Finally, an attempt will be made to unify R with the returned result.

\J’pl_set(+X, +Field, +V) :- ‘

basically, setsthe Fspec-th field of object X to value V

X can be:

aclass object, a classname, or an (object or array) type (for static fields, or java.lang.Class fields)
aclassinstance (for non-static fields)

an array (for indexed element or subrange assignment)

but not a string (no fields to retrieve)

Field can be:

an atomic field name (overloading will be resolved dynamically, by considering the inferred type of
V)

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

4 Bidirectional Interface 19

an integral field index (static resolution: not tried yet)
afieldlD/1 (static resolution: not tried yet)

avariable (field names, or array indices, are generated)(?!)

an array index | (X must be an array object: X[I] isassigned V)

apair 1-Jof integers (J can be avariable) (X must be an array object, V must be alist of values: X[I-J]
will be assigned V)

V must be ground (although one day we may pass variablesto JPL?!)

‘jpl_get(+X, +Field, -V) :- \

X can be:

aclass object, a classname, or an (object or array) type (for static fields, or javalang.Class fields)
aclassinstance (for non-static fields)

an array (for the 'length’ pseudo field, or for indexed element retrieval)

but not a String (clashes with classname; anyway, java.lang.String has no fields to retrieve)
Field can be

an atomic field name

or anintegral field index (these are a secret :-)

or afieldiD/1 (not for general consumption :-)

or an integral array index (high-bound checking is done by JVM, maybe throwing an exception)
or avariable (field names, or array indices, are generated)

or apair 1-J of integers or variables (array subranges are generated) (relational or what?!)

Immediately before jpl_get/4 returns, an attempt will be made to unify V with the internally computed
result.

4 Exceptions thrown by Java

Uncaught exceptions thrown by the VM in the course of handling a JPL 3.x Prolog API call are
mapped onto Standard Prolog exceptions, e.g.

‘ jpl _new('java.util.Date', [yesterday], D) ‘

4.Raises the Prolog exception

‘ java_exception('java.lang. |l egal Argunent Exception', @J#00084q)8972‘)

because, as the exception suggests, yesterday is not avalid constructor argument.
Java exceptions are always returned as Prolog exceptions with this structure:

‘ java_exception(classnane, reference_to_exception_object) ‘

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

5 Development Tools

Development Tools

20

Paragraph 1, line 1. Paragraph 1, line 2.

Paragraph 2, line 1. Paragraph 2, line 2.

5.1 Section title

5.1.1 Sub-section title

5.1.1.1 Sub-sub-section title

5.Sub-sub-sub-section title
5.Sub-sub-sub-sub-section title

e Listitem1.
* Listitem 2.
Paragraph contained in list item 2.

* Sub-listitem 1.
» Sub-listitem 2.

e Listitem 3. Force end of list:

Ver bati m t ext

not contained inlist item3

1. Numbered item 1.

A .Numbered item A.
B.Numbered item B.

2. Numbered item 2.
List numbering schemes: [[1]], [[al], [[A]], [[il], [[!]]-

Defined term 1

of

definition list.

Defined term 2

of

definition list.

Ver bati mt ext

in a box

--- instead of +-- suppresses the box around verbatim text.

Figure caption

Centered cell 1,1

Left-aligned cell 1,2

Right-aligned cell 1,3

cell 2,1

cell 2,2

cell 2,3

©2024,

Prolobjectlink Project -«

ALL RIGHTS RESERVED.

5 Development Tools

Table caption
No grid, no caption:

cell cell

cell cell

Horizonta line:

21

5.2 "L New page.
Italic font. Bold font. Monospaced font.

Anchor. Link to anchor. Link to http://www.pixware.fr. Link to showing alternate text. Link to
Pixware home page.

Forceline
break.

Non breaking space.
Escaped special characters: ~, =, -, +,*, [,], <,>,{, }, \.
Copyright symbol: ©, ©, ©.

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

http://www.pixware.fr
http://www.pixware.fr
http://www.pixware.fr

6 Contribution

Contribution

6.1 Contribution

6.1.1 Issues

See theissue tracker at https://github.com/prol objectlink/prol objectlink-jpi-jpl-yap to create a new
issue or take an existing one.

6.1.2 Changes and Build

Fork the repository in GitHub.

Clone your forked repository in your preferred IDE

Prolobjectlink devel opment requires.

- Java 1.8 - Maven 3.1.0 or above

Make changesin your cloned repository

Run all test to seeif the system still consistent after your changes

Create unit-tests and make sure that the include changes are covered to 100%

Run the benchmark to seeif the system performance still consistent after your changes
Add adescription of your changesin CHANGEL OG.txt and src/changes/changes.xml
Commit the changes.

Run an integration test on Travis-Cl

Submit a pull request.

6.1.3 New Implementations
The project start with some adapters implementations over most used open source prolog engines.
We accept any new adapter implementation of another prolog engine not covered at this moment.

For this propose create a new GitHub source code repository naming this follow the project
convesion:

prolobjectlink-jpi- new engine implementation name

Create an new maven project in your preferred IDE named like repository.
Copy the src/assembly/dist.xml descriptor

Copy the src/build/filters folder and change by your console main entry point
Copy and clean src/changes/changes.xml to go reporting every change

Copy src/site folder to generate asimilar project site.

Copy the pom.xml properties, build, report, etc... from ancther implementation
Change the project information.

Add your dependencies including Java Prolog Interface API

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

22

6 Contribution

<repositories>
<r eposi tory>
<i d>ossrh</id>
<name>Sonat ype Nexus Shapshot s</ name>

<rel eases>
<enabl ed>f al se</ enabl ed>
</rel eases>
<snapshot s>
<enabl ed>t r ue</ enabl ed>
</ snapshot s>
</repository>
</repositories>

<dependenci es>

<dependency>
<gr oupl d>or g. pr ol obj ectl i nk</ groupl d>
<artifactld>prolobjectlink-jpi</artifactld>
<version>[1.0.0,)</version>

</ dependency>

<dependency>
<gr oupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<version>[4.10,)</version>
<scope>t est </ scope>

</ dependency>

</ dependenci es>

<url >https://oss. sonatype. org/content/repositories/

23

snapshot s</url >

In test package copy the unit-tests cases from another implementation to develop in test driven mode.

We suggest like adapter implementation order begin with data types, parsers, engine and finaly

query.
Run al test to seeif the system to see if your implementation pass all.

Create unit-tests and make sure that the include changes are covered to 100%

Create the benchmark to seeif the system performance.

Add adescription of your changesin CHANGEL OG.txt and src/changes/changes.xml
Commit the changes.

Run an integration test on Travis-Cl or another Cl system

6.1.4 Version Numbering
Prolobjectlink version signature is Mg or.Minor.Micro.

Major version is change when the API compatibility is broken. Minor version is change when a
new feature isinclude in the release. Micro version is change when some bug is fixed or some

mai ntenance take place

Prolobjectlink suggest work over the started 1.Y .Z version to preserve compatibility all the time. You

are free of make any change adding new features, fixing bugs or code maintenance.

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

6 Contribution

6.1.5 Contact us

Please contact us at our project mailing list https.//groups.google.com/group/prolobjectlink to debat
over project evolution

Thanks for contributing to Prolobjectlink!

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

24

7 Related Works

Related Works

Paragraph 1, line 1. Paragraph 1, line 2.
Paragraph 2, line 1. Paragraph 2, line 2.

7.1 Section title

7.1.1 Sub-section title

7.1.1.1 Sub-sub-section title

7.Sub-sub-sub-section title
7.Sub-sub-sub-sub-section title

e Listitem1.
* Listitem 2.
Paragraph contained in list item 2.

* Sub-listitem 1.
» Sub-listitem 2.

e Listitem 3. Force end of list:

25

Ver bati m t ext

not contained inlist item3

1. Numbered item 1.

A .Numbered item A.
B.Numbered item B.

2. Numbered item 2.
List numbering schemes: [[1]], [[al], [[A]], [[il], [[!]]-

Defined term 1

of

definition list.

Defined term 2

of

definition list.

Ver bati mt ext

in a box

--- instead of +-- suppresses the box around verbatim text.

Figure caption

Centered cell 1,1

Left-aligned cell 1,2

Right-aligned cell 1,3

cell 2,1

cell 2,2

cell 2,3

©2024,

Prolobjectlink Project -«

ALL RIGHTS RESERVED.

7 Related Works

Table caption
No grid, no caption:

cell cell

cell cell

Horizonta line:

26

7.2 "L New page.
Italic font. Bold font. Monospaced font.

Anchor. Link to anchor. Link to http://www.pixware.fr. Link to showing alternate text. Link to
Pixware home page.

Forceline
break.

Non breaking space.
Escaped special characters: ~, =, -, +,*, [,], <,>,{, }, \.
Copyright symbol: ©, ©, ©.

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

http://www.pixware.fr
http://www.pixware.fr
http://www.pixware.fr

8 FAQ

27

8.1 Frequently Asked Questions
General
1. Why Java Prolog Interface?

2. How can use Java Prolog Interface?
3. How include Java Prolog Interface into Maven project?

8.2 General
Why Java Prolog I nterface?

Blah, Blah, ...
[top]
How can use Java Prolog | nterface?
Y ou can use Java Prolog Interface following these steps:
e Step One
e Step Two
e Step Three
[top]
How include Java Prolog I nterface into Maven project?
Blah, Blah, ...
<dependenci es>
<dependency>
<groupl d>i 0. gi t hub. prol obj ect | i nk</ gr oupl d>
<artifactld>prol objectlink-jpi</artifactld>
<versi on>1. 0</versi on>
</ dependency>
</ dependenci es>
Blah, Blah, ...
[top]

©2024, Prolobjectlink Project « ALL RIGHTS RESERVED.

	Table of Contents
	What Is
	Getting Started
	Prolog Programming
	Bidirectional Interface
	Development Tools
	Contribution
	Related Works
	FAQ

