
..

prolobjectlink-jpi-jlog
v. 1.2-SNAPSHOT
User Guide

..

Prolobjectlink Project 2024-01-09

T a b l e o f C o n t e n t s i

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

Table of Contents
...

1. Table of Contents . i

2. What Is . 1

3. Getting Started . 3

4. Prolog Programming . 5

5. Bidirectional Interface . 8

6. Development Tools . 17

7. Contribution . 19

8. Related Works . 22

9. FAQ . 24

T a b l e o f C o n t e n t s ii

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

1 W h a t I s 1

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

1 What Is
...

1.1 What is

1.1.1 Introduction

Java Prolog Interface (JPI) is an Application Provider Interface (API) for interaction between Java
and Prolog programming languages. Is a bidirectional interface that communicate Java applications
with Prolog program or database and Prolog procedures with Java class and methods.

JPI is an abstraction layer over concrete prolog drivers over Prolog Engines. This API define all
mechanism to interact with any Prolog Engine and maintain the application independent to a specific
underlying engine. JPI have several connectors to open source prolog engines like SWI, YAP, XSB
native engines and tuProlog, jTrolog, jLog Java based prolog engines.

JPI study all related Java-Prolog integration libraries and take the betters features from each solution
with the propose to achieve a common integration interface. The last feature allows switch the under
laying Prolog Engine driver and the application code still be the same.

JPI run over any Java Virtual Machine that support Java SE 5 or above. The project was tested over
HotSpot, Open J9 and JRockit Virtual Machines over Operating Systems like Windows (7,8,10),
Linux (Debian, Ubuntu) and Mac OS X. Can be deployed on Servlets Containers like Jetty, Tomcat
or Glassfish Application Server. JPI can be include in any Java Project using the commonest Java
Integration Development Enviroment (IDE) like Eclipse, Netbeans, IntellijIDEA and so on.

JPI is developed and maintained by Prolobjectlink Project an open source initiative for build logic
based applications using Prolog like fundamental Logic Programming Language in the persistence
layer and application programming.

The selected license for JPI is Simplified BSD License a permissive license allowing to concrete
implementations can use some possibilities like GPL, Apache 2.0 and others in the interface
implementation. We suggest adopt the same license from prolog java driver if it is possible. In this
way the java prolog driver and your JPI implementation share the same license and can be combined
with JPI interface that is less restrictive licensed. Finally, license is the most restrictive licensed, being
in many occasions the java prolog driver licenses the most restrictive.

1.1.2 Copyright and License Information

JPI is release under Simplified BSD License:

Copyright © 2019 Prolobjectlink Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

1 W h a t I s 2

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.1.3 Release Notes

Version 1.0.0: Initial release.

1.1.4 Acknowledgments

Thanks to Prolobjectlink Development Team, Contributors and Sponsors.

2 G e t t i n g S t a r t e d 3

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

2 Getting Started
...

2.1 Getting Started

2.1.1 Install

Java Prolog Interface API is distributed with implementation adapter and concrete prolog driver
library until it is possible according to related libraries licenses. The distributions are named
normally such that prolobjectlink-jpi-jpl7-swi7-x.y.z-dist.zip meaning that this distribution is a JPI
implementation over JPL version 7 or above and SWI-Prolog version 7 or above. The x.y.z is the
distribution version. The distribution can be downloaded in zip or tar.gz compresses format. To install
you need perform the following steps:

• Install Java Runtime Environment (JRE) 1.8 or above.
• Install Native Prolog Engine compatible to Operating System and your architecture. If the Prolog

Engine to use is Java-based this step is omitted.

• Configure System Path with Prolog Engine routes. If the Prolog Engine to use is Java-based this
step is omitted.

• Download Java Prolog Interface compatible to related prolog engine and unzip the distribution
over Operating File System.

• Configure System Path with JPI unzip folder route.
• Open a new System console and type pllink –i to see the product information.

For the JPI beginners we recommended start with a Pure Java-Prolog Engine because have less
configuration aspects and native engine are more difficult to link.

2.1.2 Directories

After download and unzip JPI distribution in the final JPI folder you will see the following structure:

Folder/File Description

bin Binaries scripts

docs Documentation

prt Prolog programs files

lib Library jars files

obj Programs to link native engine procedures

src Adapter source folder

CONTRIBUTING Binaries scripts

LICENSE Binaries scripts

NOTICE Binaries scripts

README Binaries scripts

2.1.3 Architecture

In general way and in bottom-up order the JPI architecture is composed by the guest Operating
System at low level. Over this level we find compatible with guest Operating System and Native
Prolog Engines implementations. Over this level we find Pure Java Prolog Engine implementations

2 G e t t i n g S t a r t e d 4

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

and Java Driver libraries to Native Prolog Engine. Over this layer is the JPI interface adapter
implementation for your correspondent Java Prolog Driver. In the top level we find a User
Application that use the JPI interface.

User Application

JPI

JPI-JPL

JPL

SWI

OS

2.1.4 Getting started Java to Prolog

After installation and architecture compression you can use the hello world sample for test the system
integration. This hello world sample show how interacts with JPI from Java programming language
with Abstracted Prolog Engine. For the first experience we suggesting use a Java-based Prolog engine
like tuProlog because have less configuration aspects.

Create in your preferred development environment an empty project. Set in the project build path the
JPI downloaded libraries located at lib folder. Create a Main Java class that look like below code:

public class Main {

 public static void main(String[] args) {
 PrologProvider provider = Prolog.
 getProvider(XsbProlog.class);
 PrologEngine engine = provider.newEngine();
 engine.asserta("sample('hello wolrd')");
 PrologQuery query=engine.query("sample(X)");
 System.out.println(query.one());
 }

}

2.1.5 Getting started Prolog to Java

Blah, Blah, …

3 P r o l o g P r o g r a m m i n g 5

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

3 Prolog Programming
...

3.1 Prolog Programming

3.1.1 Introduction

Prolog is a programming language that originated in the early 1970s and was initially developed
for natural language processing. It became popular with the introduction of interpreters for various
computer systems. Prolog evolved from being interpreted to a semi-interpreted language, thanks to the
creation of a compiler. Its adoption for the fifth-generation computer project and the establishment of
an ISO standard (ISO/IEC 13211-1) further contributed to its widespread use.

Prolog belongs to the paradigm of logic and declarative languages, which sets it apart significantly
from more popular languages such as FORTRAN, Pascal, C, or Java. In the aforementioned
programming languages, instructions are typically executed sequentially, one after another, in the
same order as they are written. The order only changes when a control instruction is reached (such as
a loop, conditional statement, or transfer).

Prolog programs consist of Horn clauses that represent "modus ponens" rules, meaning "If the
antecedent is true, then the consequent is true." However, the way Horn clauses are written is the
opposite of the usual convention. First, the consequent is written, followed by the antecedent.
The antecedent can be a conjunction of conditions referred to as a sequence of goals. Each goal is
separated by a comma and can be seen as similar to an instruction or procedure call in imperative
languages. In Prolog, there are no control instructions. Execution is based on two concepts:
unification and backtracking.

Thanks to unification, each goal determines a subset of clauses that can be executed. Each of these
subsets is called a choice point. Prolog selects the first choice point and continues executing the
program until determining whether the goal is true or false. If the goal is false, backtracking comes
into play. Backtracking involves undoing everything that has been executed, placing the program in
the same state it was in just before reaching the choice point. Then, the next pending choice point is
taken, and the process is repeated. All goals conclude their execution either successfully ("true") or
unsuccessfully ("false").

3.1.2 Data types

Prolog has a single data type called "term." Terms can be atoms, numbers, variables, or compound
terms. Atoms are general-purpose names with no built-in meaning. Examples of atoms are x, red,
'Taco', and 'some atom'. Numbers can be floats or integers. Prolog systems compatible with the ISO
standard can check the "bounded" flag. Most major Prolog systems support integers of arbitrary
length. Variables are represented by strings consisting of letters, numbers, and underscores. They
start with an uppercase letter or underscore. Variables closely resemble logic variables as they act as
placeholders for any term.

A compound term consists of an atom called a "functor" and a number of "arguments," which
are themselves terms. Compound terms are typically written as a functor followed by a list of
comma-separated argument terms enclosed in parentheses. The number of arguments is referred
to as the term's "arity." An atom can be seen as a compound term with arity zero. For example,
person_friends(zelda, [tom, jim]) is a compound term.

Special cases of compound terms: - Lists: An ordered collection of terms denoted by square brackets.
The terms are separated by commas. An empty list is represented by []. For instance, [1, 2, 3] or [red,
green, blue].

3 P r o l o g P r o g r a m m i n g 6

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

- Strings: A sequence of characters surrounded by quotes. Depending on the value of the Prolog flag
"double_quotes," a string can be treated as a list of character codes, a list of single-character atoms, or
simply as an atom. For example, "to be, or not to be".

ISO Prolog provides predicates like atom/1, number/1, integer/1, and float/1 for type-checking.

3.1.3 Rules and Facts

Prolog programs define relationships using clauses. Pure Prolog is limited to Horn clauses. There are
two types of clauses: facts and rules. A rule has the form:

Head :- Body.

This signifies that "Head is true if Body is true." The body of a rule consists of calls to predicates,
which are the goals of the rule. The built-in logical operator ,/2 (denoting a binary operator named ",")
represents the conjunction of goals, while ;/2 represents disjunction. Conjunctions and disjunctions
can only appear in the body of a rule, not in the head.

Clauses with empty bodies are referred to as facts. An example of a fact is:

cat(tom).

This is equivalent to the rule:

cat(tom) :- true.

The built-in predicate true/0 is always true. Based on the given fact, we can ask: Is tom a cat?

?- cat(tom).

The answer is "Yes." We can also inquire about the things that are cats: What things are cats?

?- cat(X).

The answer is X = tom. Clauses with bodies are known as rules. An example of a rule is:

animal(X) :- cat(X).

If we include this rule and ask what things are animals:

?- animal(X).

The answer is X = tom.

Due to the relational nature of many built-in predicates, they can be used in multiple ways. For
instance, length/2 can be used to find the length of a list (length(List, L)) given a list List, generate
a list skeleton of a specific length (length(X, 5)), or generate both list skeletons and their lengths
together (length(X, L)). Similarly, append/3 can be employed to append two lists (append(ListA,
ListB, X)) given lists ListA and ListB, or split a given list into parts (append(X, Y, List)) given a list
List. Consequently, a relatively small set of library predicates is sufficient for many Prolog programs.

As a general-purpose language, Prolog also offers various built-in predicates for common tasks
such as input/output, graphics usage, and interaction with the operating system. These predicates do
not have relational meanings and are only useful for their system-related effects. For example, the
predicate write/1 displays a term on the screen.

3.1.4 Execution

To run a Prolog program, you start by entering a single goal called the query. The Prolog engine
then attempts to find a resolution refutation of the negated query. Prolog uses a method called
SLD resolution. If the negated query can be proven false, it means that the original query, with the
appropriate variable assignments, is a logical consequence of the program. In this case, all the variable
assignments are displayed, and the query is considered successful.

3 P r o l o g P r o g r a m m i n g 7

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

Operatively, Prolog's execution strategy can be seen as an extension of function calls in other
programming languages. One difference is that multiple clause heads can match a particular call.
When this happens, the system creates a choice point, where it matches the goal with the clause head
of the first alternative and proceeds with that alternative's goals. If any goal fails during program
execution, all variable assignments made since the most recent choice point was created are undone,
and execution continues with the next alternative of that choice point. This strategy is known as
chronological backtracking.

For example:

 mother_child(trude, sally).
 father_child(tom, sally).
 father_child(tom, erica).
 father_child(mike, tom).
 sibling(X, Y) :- parent_child(Z, X), parent_child(Z, Y).
 parent_child(X, Y) :- father_child(X, Y).
 parent_child(X, Y) :- mother_child(X, Y).

Executing the following query will yield a true result:

 ?- sibling(sally, erica).
 Yes

Here's how the result is obtained: Initially, the only clause head that matches the query `sibling(sally,
erica)` is the first one. Therefore, proving the query is equivalent to proving the body of
that clause with the appropriate variable assignments, which in this case is the conjunction
`(parent_child(Z,sally), parent_child(Z,erica))`. The next goal to prove is the leftmost part of this
conjunction: `parent_child(Z, sally)`. There are two clause heads that match this goal. The system
creates a choice point and attempts the first alternative, which has the body `father_child(Z, sally)`.
This goal can be proven with the fact `father_child(tom, sally)`, leading to the assignment `Z = tom`.
The next goal to prove is the second part of the conjunction: `parent_child(tom, erica)`. This is also
proven by the corresponding fact. Since all the goals have been proven, the query is considered
successful. As the query doesn't contain any variables, no assignments are displayed to the user.

A query that includes variables, such as `?- father_child(Father, Child).`, will list all valid answers
through backtracking. Note that with the given code, the query `?- sibling(sally, sally).` also succeeds.
If there are specific restrictions, additional goals should be added to the code.

ISO Prolog is a technical standard developed by the International Organization for Standardization
(ISO). It consists of two main parts. The first part, ISO/IEC 13211-1, was published in 1995 with
the goal of standardizing the core elements of Prolog. This standard aims to bring clarity and remove
ambiguities in the language, making it easier to write portable programs. Additionally, there have
been three corrigenda issued: Cor.1:2007, Cor.2:2012, and Cor.3:2017.

The second part, ISO/IEC 13211-2, was published in 2000 and provides support for modules within
the standard. The maintenance of this standard is overseen by the ISO/IEC JTC1/SC22/WG17
working group. In the United States, the US Technical Advisory Group for the standard is ANSI
X3J17.

4 B i d i r e c t i o n a l I n t e r f a c e 8

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

4 Bidirectional Interface
...

4.1 Bidirectional Interface

4.1.1 Install

Java Prolog Interface API is distributed with implementation adapter and concrete prolog driver
library until it is possible according to related libraries licenses. The distributions are named
normally such that prolobjectlink-jpi-jpl7-swi7-x.y.z-dist.zip meaning that this distribution is a JPI
implementation over JPL version 7 or above and SWI-Prolog version 7 or above. The x.y.z is the
distribution version. The distribution can be downloaded in zip or tar.gz compresses format. To install
you need perform the following steps: •Install Java Runtime Environment (JRE) 1.8 or above. •Install
Native Prolog Engine compatible to Operating System and your architecture. If the Prolog Engine
to use is Java-based this step is omitted. •Configure System Path with Prolog Engine routes. If the
Prolog Engine to use is Java-based this step is omitted. •Download Java Prolog Interface compatible
to related prolog engine and unzip the distribution over Operating File System. •Configure System
Path with JPI unzip folder route. •Open a new System console and type pllink –i to see the product
information. For the JPI beginners we recommended start with a Pure Java-Prolog Engine because
have less configuration aspects and native engine are more difficult to link.

4.1.2 Getting started Java to Prolog

After installation and architecture compression you can use the hello world sample for test the system
integration. This hello world sample show how interacts with JPI from Java programming language
with Abstracted Prolog Engine. For the first experience we suggesting use a Java-based Prolog engine
like tuProlog because have less configuration aspects.

Create in your preferred development environment an empty project. Set in the project build path the
JPI downloaded libraries located at lib folder. Create a Main Java class that look like below code:

 public class Main {
 public static void main(String[] args) {
 PrologProvider provider = Prolog.getProvider();
 PrologEngine engine = provider.newEngine();
 engine.asserta("sample('hello wolrd')");
 PrologQuery query=engine.query("sample(X)");
 System.out.println(query.one());
 }
 }

4.1.3 Architecture

JPI use a layered architecture pattern where every layer represents a component. The multi-engine
Java Prolog connectors provide different levels of abstraction to simplify the implementations of
common inter-operability task JPC. Java Prolog Connectors architectures describe three fundamentals
layers, High-level API layer, Engine Adapter layer and Concrete Engine layer. High-level API layer
define all services to be used by the users in the Java Prolog Application that is the final architecture
layer on the architecture stack. High-level API provide the common implementation of Engine
Abstraction, Data Type and Inter-Language conversion. The adapter layer adapts before mentioned
features to communicate with the concrete Engine Layer, being the last responsible of execute the
request services.

4 B i d i r e c t i o n a l I n t e r f a c e 9

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

All existing Java Prolog Connectors implementation only bring support for Native Prolog
Engines that have JVM bindings driver. JPI project is more inclusive and find connect all Prolog
Engines Categories, Native and Java Based implementations. Some particular Java Based
implementations in the future can be implement in strike forward mode the JPI interface. This
particulars implementations reduce the impedance mismatch by remove the adapter layer. Therefore,
JPI reference implementations will be faster than other that use adapter layer.

In JPI architecture stack in the bottom layer we have the Operating System. The Operating System
can be Windows, Linux or Mac OS. Over Operating System, we have the native implementation of
JVM and Prolog Engines like SWI, SWI7 and others. Over JVM and Prolog Engines we have Java
Based Prolog Engines implementations and JVM bindings driver that share the runtime environment
with JVM and native Prolog Engines. Over Java Based Prolog Engines implementations and
JVM bindings drivers we have the JPI correspondent adapters. The adapters artifacts are the JPI
implementations for each Prolog Engines. Over each adapter we have the JPI application provider
interface and at the top stack we the final user application. The user application only interacts with the
JPI providing single sourcing and transparency.

4.1.4 Prolog Provider

Prolog Provider is the mechanism to interact with all Prolog components. Provider classes
implementations allow create Prolog Terms, Prolog Engine, Java Prolog Converter, Prolog Parsers
and system logger. Using io.github.prolobjectlink.prolog.Prolog bootstrap class the Prolog Providers
are created specifying the provider class in getProvider(Class ?) method. This is the workflow start
for JPI. When the Prolog Provider is created the next workflow step is the Prolog Terms creation
using Java primitive types or using string with Prolog syntax. Provider allow create/parsing all Prolog
Terms (Atoms, Numbers, Variables and Compounds). After term creation/parsing the next step
is create an engine instance with newEngine() method. Using previous term creation and engine
instance Prolog Queries can be formulated. This is possible because the engine class have multiples
queries creation methods like a query factory. After query creation the Query interface present many
methods to retrieve the query results. The result methods are based on result quantities, result terms,
result object types, etc… This is the final step in the workflow. In the table 10 is resumed all Prolog
Provider Interface methods.

4.1.5 Prolog Terms

All Java Prolog connector libraries provide data type abstraction. Prolog data type abstraction have
like ancestor the Term class. Prolog term is coding like abstract class and other Prolog terms are
derived classes. In PrologTerm is defined the common term operation for all term hierarchy (functor,
arity, compare, unify, arguments). The derived classes implement the correct behavior for each before
mentioned operations. All Prolog data types PrologAtom, PrologNumber, PrologList, PrologStructure
and PrologVariable are derived from this class. All before mentioned classes extends from this class
the commons responsibilities. PrologTerm extends from Comparable interface to compare the current
term with another term based on Standard Order.

PrologAtom represent the Prolog atom data type. Prolog atoms are can be of two kinds simple or
complex. Simple atoms are defined like a single alpha numeric word that begin like initial lower
case character. The complex atom is defining like any character sequence that begin and end with
simple quotes. The string passed to build a simple atom should be match with {a-z}{A-Za-z0-9_}*
regular expression. If the string passed to build an atom don't match with the before mentioned regular
expression the atom constructor can be capable of create a complex atom automatically. For complex
atom the string value can have the quotes or just can be absent. The printed string representation of
the complex atom implementation set the quotes if they are needed.

4 B i d i r e c t i o n a l I n t e r f a c e 10

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

 PrologTerm pam = provider.newAtom("pam");
 PrologTerm bob = provider.newAtom("bob");

PrologDouble represent a double precision floating point number. Extends from PrologNumber
who contains an immutable Double instance. The Prolog Provider is the mechanism to create
a new Prolog double invoking PrologProvider.newDouble(Number). PrologFloat represent a
single precision floating point number. Extends from PrologNumber who contains an immutable
Float instance. The Prolog Provider is the mechanism to create a new Prolog float invoking
PrologProvider.newFloat(Number). PrologInteger represent an integer number. Extends from
PrologNumber who contains an immutable Integer instance. The Prolog Provider is the mechanism
to create a new Prolog integer invoking PrologProvider.newInteger(Number). Prolog term that
represent a long integer number. Extends from PrologNumber who contains an immutable Long
instance. The Prolog Provider is the mechanism to create a new Prolog long integer invoking
PrologProvider.newLong(Number).

 PrologTerm pi = provider.newDouble(Math.PI);
 PrologTerm euler = provider.newFloat(Math.E);
 PrologTerm i = provider.newInteger(10);
 PrologTerm l = provider.newLong(10);

PrologVariable is created using PrologProvider.newVariable(int) for anonymous variables and
PrologProvider.newVariable(String, int) for named variables. The Prolog variables can be used and
reused because they remain in java heap. You can instantiate a prolog variable and used it any times
in the same clause because refer to same variable every time. The integer parameter represents the
declaration variable order in the Prolog clause starting with zero.

 PrologTerm x = provider.newVariable("X", 0);
 PrologTerm y = provider.newVariable("Y", 1);
 PrologTerm z = provider.newVariable("Z", 2);

 engine.assertz(
 provider.newStructure(grandparent, x, z),
 provider.newStructure(parent, x, y),
 provider.newStructure(parent, y, z)
);

PrologReference term is inspired on JPL JRef. This term is like a structure compound term that have
like argument the object identification atom. The functor is the @ character and the arity is 1. An
example of this prolog term is e.g. @(J#00000000000000425). To access to the referenced object, is
necessary use PrologTerm.getObject().

PrologList are a special compound term that have like functor a dot (.) and arity equals 2. Prolog
list are recursively defined. The first item in the list is referred like list head and the second item
list tail. The list tail can be another list that contains head and tail. A special list case is the empty
list denoted by no items brackets ([]). The arity for this empty list is zero. The Prolog Provider is
the mechanism to create a new PrologList is invoking PrologProvider.newList() for empty list or
PrologProvider.newList(PrologTerm) for one item list or PrologProvider.newList(PrologTerm[]) for
many items.

4 B i d i r e c t i o n a l I n t e r f a c e 11

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

 PrologTerm empty = provider.newList();
 PrologTerm one = provider.newInteger(1);
 PrologTerm two = provider.newInteger(2);
 PrologTerm three = provider.newInteger(3);
 PrologTerm list = provider.newList(
 new PrologTerm[] { one, two, three}
);
 for (PrologTerm prologTerm : list) {
 System.out.println(prologTerm);
 }

PrologList implement Iterable interface to be used in for each sentence iterating over every element
present in the list.

 Iterator<PrologTerm> i = list.iterator();
 while (i.hasNext()) {
 PrologTerm prologTerm = i.next();
 System.out.println(prologTerm);
 }

 for (Iterator<PrologTerm> i = list.iterator(); i.hasNext();) {
 PrologTerm prologTerm = i.next();
 System.out.println(prologTerm);
 }

Prolog structures consist in a relation the functor (structure name) and arguments enclosed between
parenthesis. The Prolog Provider is the mechanism to create a new Prolog structures invoking
PrologProvider.newStructure(String, PrologTerm...). Two structures are equals if and only if are
structure and have equals functor and arguments. Structures terms unify only with same functor and
arguments structures, with free variable or with with structures where your arguments unify if they
have the same functor and arity. Structures have a special property named arity that means the number
of arguments present in the structure. There are two special structures term. They are expressions
(Two arguments structure term with operator functor) and atoms (functor with zero arguments). For
the first special case must be used PrologProvider.newStructure(PrologTerm, String, PrologTerm)
specifying operands like arguments and operator like functor.

 PrologTerm pam = provider.newAtom("pam");
 PrologTerm bob = provider.newAtom("bob");
 PrologTerm parent = provider.newStructure("parent", pam, bob);

4.1.6 Prolog Engine

Prolog Engine provide a general propose application interface to interact with Prolog Programing
Language. Is a convenient abstraction for interacting with Prolog Virtual Machine from Java. In
Java Prolog Engine connectors libraries, the abstract engine is able to answer queries using the
abstract term representation before mentioned. There are several implementation engines and in this
project we try connect from top level engine to more concrete or specific Prolog Engine. Based on
JPC we have a top level engine that communicate with more concretes engines. Over this concretes
engines we offer several services to interact with the concrete engines with low coupling and platform
independency.

4 B i d i r e c t i o n a l I n t e r f a c e 12

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

4.1.7 Prolog Query

Prolog query is the mechanism to query the prolog database loaded in prolog engine. The way to
create a new prolog query is invoking query() method in the Prolog Engine. When this method is
called the prolog query is open an only dispose() in PrologQuery object close the current query and
release all internal resources. Prolog query have several methods to manipulate the result objects. The
main difference is in return types and result quantities. The result types enough depending of desire
data type. Maps of variables name key and Prolog terms as value, Maps of variables name key and
Java objects as value, List of before mentioned maps, Prolog terms array, Prolog terms matrix, list of
Java Objects and list of list of Java Objects. Respect to result quantities Prolog query offer one, n-th
or all possible solutions. This is an important feature because the Prolog engine is forced to retrieve
the necessary solution quantities. Prolog query implement Iterable and Iterator. This implementation
helps to obtain successive solutions present in the query.

 public class Main {
 public static void main(String[] args) {
 PrologProvider provider = Prolog.getProvider();
 PrologEngine engine = provider.newEngine("zoo.pl");
 PrologVariable x = provider.newVariable("X", 0);
 PrologQuery query = engine.query(provider.newStructure("dark", x));
 while (query.hasNext()) {
 PrologTerm value = query.nextVariablesSolution().get("X");
 System.out.println(value);
 }
 query.dispose();
 engine.dispose();
 }
 }

 public class Main {
 public static void main(String[] args) {
 PrologProvider provider = Prolog.getProvider();
 PrologEngine engine = provider.newEngine("zoo.pl");
 PrologVariable x = provider.newVariable("X", 0);
 PrologQuery query = engine.query(provider.newStructure("dark", x));
 for (Collection<PrologTerm> col : query) {
 for (PrologTerm prologTerm : col) {
 System.out.println(prologTerm);
 }
 }
 query.dispose();
 engine.dispose();
 }
 }

4.1.8 Prolog Query Builder

Prolog query builder to create prolog queries. The mechanism to create a new query builder is using
PrologEngine.newQueryBuilder(). The query builder emulates the query creation process. After
define all participant terms with the begin(PrologTerm) method, we specify the first term in the query.
If the query has more terms, they are created using comma(PrologTerm) for everyone. Clause builder
have a getQueryString() for string representation of the clause in progress. After clause definition this
builder have query() method that create the final query instance ready to be used. The follow code
show how create a Prolog query ?- big(X), dark(X). using PrologQueryBuilder interface.

4 B i d i r e c t i o n a l I n t e r f a c e 13

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

 PrologVariable x = provider.newVariable("X", 0);
 PrologStructure big = provider.newStructure("big", x);
 PrologStructure dark = provider.newStructure("dark", x);
 PrologQueryBuilder builder = engine.newQueryBuilder();
 PrologQuery query = builder.begin(dark).comma(big).query();

4.1.9 Prolog Clause

Prolog clause is composed by two prolog terms that define a prolog clause, the head and the body.
This representation considers the prolog clause body like a single term. If the body is a conjunctive
set of terms, the body is a structure with functor/arity (, /2) and the first argument is the first element
in the conjunction and the rest is a recursive functor/arity (, /2). The functor and arity for the clause
is given from head term functor and arity. This class define some properties for commons prolog
clause implementations. They are boolean flags that indicate if the prolog clause is dynamic multi-
file and discontiguos. This class have several methods to access to the clause components and retrieve
some clause properties and information about it. Additionally, this class contains a prolog provider
reference for build terms in some operations.

4.1.10 Prolog Clause Builder

Prolog clause builder to create prolog clauses. The mechanism to create a new clause builder is
using PrologEngine.newClauseBuilder(). The clause builder emulates the clause creation process.
After define all participant terms with the begin(PrologTerm) method, we specify the head of the
clause. If the clause is a rule, after head definition, the clause body is created with neck(PrologTerm)
for the first term in the clause body. If the clause body have more terms, they are created using
comma(PrologTerm) for everyone. Clause builder have a getClauseString() for string representation
of the clause in progress. After clause definition this builder have asserta(), assertz(),clause(),retract()
that use the wrapped engine invoking the correspondent methods for check, insert or remove clause
respectively.

 PrologTerm z = provider.newVariable("Z", 0);
 PrologTerm darkZ = provider.newStructure("dark", z);
 PrologTerm blackZ = provider.newStructure("black", z);
 PrologTerm brownZ = provider.newStructure("brown", z);
 PrologClauseBuilder builder = engine.newClauseBuilder();
 builder.begin(darkZ).neck(blackZ).assertz();
 builder.begin(darkZ).neck(brownZ).assertz();

The Prolog result in database is showed in the follow code. The table 19 show the Prolog clause
builder interface methods.

 dark(Z): -
 black(Z).
 dark(Z): -
 brown(Z).

4.1.11 Prolog Scripting in Java

Java 6 added scripting support to the Java platform that lets a Java application execute scripts written
in scripting languages such as Rhino JavaScript, Groovy, Jython, JRuby, Nashorn JavaScript,
etc. All classes and interfaces in the Java Scripting API are in the javax.script package. Using a
scripting language in a Java application provides several advantages, dynamic type, simple way
to write programs, user customization, easy way to develop and provide domain-specific features

4 B i d i r e c t i o n a l I n t e r f a c e 14

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

that are not available in Java. For achieve this propose Java Scripting API introduce a scripting
engine component. A script engine is a software component that executes programs written in a
particular scripting language. Typically, but not necessarily, a script engine is an implementation of
an interpreter for a scripting language. To run a script in Java is necessary perform the following three
steps, create a script engine manager, get an instance of a script engine from the script engine manager
and Call the eval() method of the script engine to execute a script.

 public class Main {
 public static void main(String[] args) {
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("prolog");
 Boolean result = engine.eval("?- X is 5+3.");
 Integer solution = engine.get("X");
 System.out.println(solution);
 }
 }

Using script engine, it possible read Prolog source file. Read Prolog source file allow coding all
prolog source in separate mode respect to Java program.

 public class Main {
 public static void main(String[] args) {
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("prolog");
 Boolean read = engine.eval(new FileReader("family.pl"));
 Boolean eval = engine.eval("?- parent(Parent, Child)");
 Object parent = engine.get("Parent");
 Object child = engine.get("Child");
 System.out.println(parent);
 System.out.println(child);
 }
 }

4.1.12 Getting started Prolog to Java

This page describes a BSF (Bean Scripting Framework) engine for JLog, a Prolog-in-Java system.
JLog is a full-featured Prolog interpreter that can be run as an applet, an application or embedded
through an API. You can download the full package, which includes JLog-1.3.6, at JLog-1.3.6-
ulf.zip. It's licensed under the GPL.

BSF enables a Java host program to call scripts or programs written in other languages in a language-
neutral way. That means that a BSF-enabled application can a) call scripts and programs written in
other languages without knowing in advance in which language they might be (embedding), and
b) that any language for which a BSF engine is available can be used to script a BSF-enabled Java
application (scripting). Currently, BSF integration is available for JavaScript?, XSLT, Jython, Python,
Ruby, ObjectScript?, NetRexx?, TCL, Groovy and now for Prolog. BSF has been released under
the Apache License and can be found at Apache Commons BSF. It's also included in the download
above.

The JLog/BSF integration library (or BSF engine) was developed by myself. JLog was developed by
Glendon Holst, and can be found at JLog. It's also licensed under the GPL.

https://www.ulfdittmer.com/content/JLog-1.3.6-ulf.zip
https://www.ulfdittmer.com/content/JLog-1.3.6-ulf.zip
https://commons.apache.org/proper/commons-bsf/
http://jlogic.sourceforge.net/

4 B i d i r e c t i o n a l I n t e r f a c e 15

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

4.1.12.1 Predicates

JLogBSFEngine? defines a number of Prolog predicates that can be used for interactions between
both languages.

 bsf_register (Name, Bean)

Stores the object in variable Bean under the given name in the registry. Name must be a string or a
variable bound to a string. Bean must be a bound variable.

 bsf_lookup (Name, ResultVar)

Looks up the object of this name in the registry, and binds it to the variable ResultVar. Name must be
a string or a variable bound to a string.

 bsf_unregister (Name)

Removes the object with this name from the registry. Name must be a string or a variable bound to a
string.

 bsf_import (Package)

Adds the given package name to the lists of imports, so that all Java objects in that package can be
referenced just by their classname, instead of by their fully qualified name. java.lang is imported
automatically. Package must be a string or a variable bound to a string.

 bsf_static (Class, ResultVar)

Retrieves a class and stores it in variable ResultVar, so that static methods can be invoked on it (e.g.
Integer.valueOf). Can also be used to retrieve static fields of classes (e.g. java.lang.System.out). Class
must be a string or a variable bound to a string.

 bsf_create (ResultVar, Class, Parameters [, Types])

Prolog wrapper for a Java constructor. The resulting object of class Class is put in the variable
ResultVar. Parameters is the list of parameters. The Java equivalent would be ResultVar = new
Class(Parameters). bsf_create/3 (w/o the Types parameter) tries to figure out the correct method
signature based on the types of the given parameters. This works in most cases, but not always. If it
can't decide which constructor to use, an exception is thrown that advises to use bsf_create/4 instead.
That means that the list of parameters is needed to select the correct one.

 bsf_invoke (ResultVar, Bean, Method, Parameters [, Types])

Prolog wrapper for a Java method invocation. Its Java equivalent would be ResultVar =
Bean.Method(Parameters). bsf_invoke/4 (w/o the Types parameter) tries to figure out the correct
method signature based on the types of the given parameters. This works in most cases, but
not always. If it can#t decide which method to use, an exception is thrown that advises to use
bsf_invoke/5 instead. That means that the list of parameters is needed to select the correct one.

 bsf_addevent (Bean, Action, Script)

This causes the Prolog code in Script to be executed whenever the Java object Bean fires an Action
event. The ScriptedUI example demonstrates this. Bean must be bound to a Java object. Action and
Script must be strings or bound to a string.

4 B i d i r e c t i o n a l I n t e r f a c e 16

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

 bsf_j2p (Object, Term)

Converts Object -which must be bound to a Java object- to a Prolog term.

 bsf_p2j (Term, Object)

Converts Term -which must be bound to a Prolog term- to a Java object.

4.1.12.2 Examples

This example is use to get the current time from 'java.util.Date' instance.

 :- load_library('./bsf').

 uptime(X) :-
 bsf_create(Date, 'java.util.Date', []),
 bsf_invoke(L, Date, 'getTime', []),
 bsf_create(Long, 'java.lang.Long', [L]),
 bsf_invoke(O, Long, 'intValue', []),
 bsf_j2p(O, X).

It prints a table of Fahrenheit and Celsius temperatures. This is not so much a practicable example, but
rather a demonstration that wherever BSF is used, Prolog code can run.

 :- load_library('./bsf').

 f2c(Start, End) :-
 Start =< End,
 bsf_lookup('out', OUT),
 bsf_static('Math', MATH),
 bsf_invoke(_, OUT, 'print', [Start]),
 T is (Start-32) * 5/9,
 bsf_invoke(T1, MATH, 'round', [T]),
 bsf_invoke(_, OUT, 'print', [T1]),
 Start1 is Start + 10,
 f2c(Start1, End).
 f2c(30, 100).

5 D e v e l o p m e n t T o o l s 17

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

5 Development Tools
...
Paragraph 1, line 1. Paragraph 1, line 2.

Paragraph 2, line 1. Paragraph 2, line 2.

5.1 Section title

5.1.1 Sub-section title

5.1.1.1 Sub-sub-section title

5.Sub-sub-sub-section title

5.Sub-sub-sub-sub-section title

• List item 1.
• List item 2.

Paragraph contained in list item 2.

• Sub-list item 1.
• Sub-list item 2.

• List item 3. Force end of list:

Verbatim text not contained in list item 3

1. Numbered item 1.

A.Numbered item A.
B.Numbered item B.

2. Numbered item 2.
List numbering schemes: [[1]], [[a]], [[A]], [[i]], [[I]].

Defined term 1

of definition list.

Defined term 2

of definition list.

Verbatim text
 in a box

--- instead of +-- suppresses the box around verbatim text.

Figure caption

Centered cell 1,1 Left-aligned cell 1,2 Right-aligned cell 1,3

cell 2,1 cell 2,2 cell 2,3

5 D e v e l o p m e n t T o o l s 18

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

Table caption

No grid, no caption:

cell cell

cell cell

Horizontal line:

5.2 ^L New page.
Italic font. Bold font. Monospaced font.

Anchor. Link to anchor. Link to http://www.pixware.fr. Link to showing alternate text. Link to
Pixware home page.

Force line
break.

Non breaking space.

Escaped special characters: ~, =, -, +, *, [,], <, >, {, }, \.

Copyright symbol: ©, ©, ©.

http://www.pixware.fr
http://www.pixware.fr
http://www.pixware.fr

6 C o n t r i b u t i o n 19

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

6 Contribution
...

6.1 Contribution

6.1.1 Issues

See the issue tracker at https://github.com/prolobjectlink/prolobjectlink-jpi-jlog to create a new issue
or take an existing one.

6.1.2 Changes and Build

Fork the repository in GitHub.

Clone your forked repository in your preferred IDE

Prolobjectlink development requires.

- Java 1.8 - Maven 3.1.0 or above

Make changes in your cloned repository

Run all test to see if the system still consistent after your changes

Create unit-tests and make sure that the include changes are covered to 100%

Run the benchmark to see if the system performance still consistent after your changes

Add a description of your changes in CHANGELOG.txt and src/changes/changes.xml

Commit the changes.

Run an integration test on Travis-CI

Submit a pull request.

6.1.3 New Implementations

The project start with some adapters implementations over most used open source prolog engines.

We accept any new adapter implementation of another prolog engine not covered at this moment.

For this propose create a new GitHub source code repository naming this follow the project
convesion:

prolobjectlink-jpi- new engine implementation name

Create an new maven project in your preferred IDE named like repository.

Copy the src/assembly/dist.xml descriptor

Copy the src/build/filters folder and change by your console main entry point

Copy and clean src/changes/changes.xml to go reporting every change

Copy src/site folder to generate a similar project site.

Copy the pom.xml properties, build, report, etc... from another implementation

Change the project information.

Add your dependencies including Java Prolog Interface API

6 C o n t r i b u t i o n 20

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

<repositories>
 <repository>
 <id>ossrh</id>
 <name>Sonatype Nexus Snapshots</name>
 <url>https://oss.sonatype.org/content/repositories/snapshots</url>
 <releases>
 <enabled>false</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </repository>
</repositories>
...
<dependencies>
 ...
 <dependency>
 <groupId>org.prolobjectlink</groupId>
 <artifactId>prolobjectlink-jpi</artifactId>
 <version>[1.0.0,)</version>
 </dependency>
 ...
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>[4.10,)</version>
 <scope>test</scope>
 </dependency>
 ...
</dependencies>

In test package copy the unit-tests cases from another implementation to develop in test driven mode.

We suggest like adapter implementation order begin with data types, parsers, engine and finally
query.

Run all test to see if the system to see if your implementation pass all.

Create unit-tests and make sure that the include changes are covered to 100%

Create the benchmark to see if the system performance.

Add a description of your changes in CHANGELOG.txt and src/changes/changes.xml

Commit the changes.

Run an integration test on Travis-CI or another CI system

6.1.4 Version Numbering

Prolobjectlink version signature is Major.Minor.Micro.

Major version is change when the API compatibility is broken. Minor version is change when a
new feature is include in the release. Micro version is change when some bug is fixed or some
maintenance take place

Prolobjectlink suggest work over the started 1.Y.Z version to preserve compatibility all the time. You
are free of make any change adding new features, fixing bugs or code maintenance.

6 C o n t r i b u t i o n 21

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

6.1.5 Contact us

Please contact us at our project mailing list https://groups.google.com/group/prolobjectlink to debat
over project evolution

Thanks for contributing to Prolobjectlink!

7 R e l a t e d W o r k s 22

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

7 Related Works
...
Paragraph 1, line 1. Paragraph 1, line 2.

Paragraph 2, line 1. Paragraph 2, line 2.

7.1 Section title

7.1.1 Sub-section title

7.1.1.1 Sub-sub-section title

7.Sub-sub-sub-section title

7.Sub-sub-sub-sub-section title

• List item 1.
• List item 2.

Paragraph contained in list item 2.

• Sub-list item 1.
• Sub-list item 2.

• List item 3. Force end of list:

Verbatim text not contained in list item 3

1. Numbered item 1.

A.Numbered item A.
B.Numbered item B.

2. Numbered item 2.
List numbering schemes: [[1]], [[a]], [[A]], [[i]], [[I]].

Defined term 1

of definition list.

Defined term 2

of definition list.

Verbatim text
 in a box

--- instead of +-- suppresses the box around verbatim text.

Figure caption

Centered cell 1,1 Left-aligned cell 1,2 Right-aligned cell 1,3

cell 2,1 cell 2,2 cell 2,3

7 R e l a t e d W o r k s 23

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

Table caption

No grid, no caption:

cell cell

cell cell

Horizontal line:

7.2 ^L New page.
Italic font. Bold font. Monospaced font.

Anchor. Link to anchor. Link to http://www.pixware.fr. Link to showing alternate text. Link to
Pixware home page.

Force line
break.

Non breaking space.

Escaped special characters: ~, =, -, +, *, [,], <, >, {, }, \.

Copyright symbol: ©, ©, ©.

http://www.pixware.fr
http://www.pixware.fr
http://www.pixware.fr

8 F A Q 24

© 2 0 2 4 , P r o l o b j e c t l i n k P r o j e c t • A L L R I G H T S R E S E R V E D .

8 FAQ
...

8.1 Frequently Asked Questions
General

1. Why Java Prolog Interface?
2. How can use Java Prolog Interface?
3. How include Java Prolog Interface into Maven project?

8.2 General
Why Java Prolog Interface?

Blah, Blah, …

[top]

How can use Java Prolog Interface?

You can use Java Prolog Interface following these steps:

• Step One
• Step Two
• Step Three

[top]

How include Java Prolog Interface into Maven project?

Blah, Blah, …

 ...
 <dependencies>
 <dependency>
 <groupId>io.github.prolobjectlink</groupId>
 <artifactId>prolobjectlink-jpi</artifactId>
 <version>1.0</version>
 </dependency>
 </dependencies>
 ...

Blah, Blah, …

[top]

	Table of Contents
	What Is
	Getting Started
	Prolog Programming
	Bidirectional Interface
	Development Tools
	Contribution
	Related Works
	FAQ

